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It is shown that the single-step periodic signal (periodic telegraph signal) can
not produce coherent stochastic resonance for diffusion on a segment with one
absorbing and one reflecting end points while the multi-step periodic signal
does. The general features of this process are exihibited. The resonant frequency
is found to decrease and the mean first passage time at resonant frequency
increases linearly, as we increase the length of the medium. The cycle variable is
shown to be the proper argument to express the first passage probability at
resonance. A formula for first passage probability at resonance is derived in
terms of two universal functions, which clearly isolates its dependence on the
length of the medium.
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1. INTRODUCTION

After the pioneering achievement of separation of large DNA molecules in
gel medium by the application of uniform and time-dependent periodic
electric field, (1, 2) the mechanism of cooperative interplay between random
noise and a deterministic periodic signal attracts considerable interests. It
has been found that with this technique, large molecules in the size range 2
to 400 kb exihibit size-dependent mobilities. Similar ideas have also arisen
in other types of chromatographic processes. (3)

The mean first passage time (MFPT) is a useful tool to investigate the
diffusive transport property in a medium. The theory of first passage time
has been worked out in great detail for both infinite medium and explicitly



time-independent diffusive processes.(4–6) However, for explicitly time-depen-
dent processes and in finite medium analytic closed form expressions are not
available. In this respect also this problem attracts much attentions to the
scientific community.
The first analysis of this phenomena has been done for a random walk

on a lattice numerically, and for a diffusive process in a continuous
medium with periodic signal of small amplitude perturbatively. (7) Their
results indicate that the oscillating field can create a form of coherent
motion capable of reducing the first passage time by a significant amount.
This enhancement of the mobility of a particle in a diffusive medium by the
application of proper oscillating field is known in the literatures (8, 9) as
coherent stochastic resonance (CSR).
In order to investigate the reason for this cooperative behavior of

random noise and deterministic periodic signal this problem has been for-
mulated in much simpler terms by approximating the sinusoidal periodic
signal by the telegraph signal (8) and subsequently it has been shown (9, 10)

that the telegraph signal can not produce CSR. Finally, when the sinusoi-
dal signal has been approximated as a multi-step periodic signal, (10) the non-
monotonic behavior of mean first passage time (MFPT) with respect to the
characteristic frequency of the periodic signal is recovered explaining the
reason of CSR in the case of two absorbing boundaries explicitly. The
general characteristics of the moments of first passage time probability
density function (referred to shortly as ‘‘first passage probability’’ (FPP)
hereafter) in their calculations (10) for continuous medium and with arbi-
trary amplitide of the periodic signal are found to be in agreement with the
numerical simulation of the random walk model on a lattice. (7)

When the phenomenon of CSR is being discussed for the linear systems,
it turns out that the boundary conditions play a crucial role in some
models. (11–14) Doering and Gadoua have considered the jumps in a linear
double-well potential when the potential fluctuates between two values at a
rate c. The non-monotonic dependence of the MFPT on c (called ‘‘the reso-
nance activation’’) has been found to occur when one of the boundaries is
absorbing and the other is reflecting. (11) Brey and Cassado-Pascual (12) have
investigated random walk on a one dimensional lattice in which at any time
each site has one of two transition rates which are being allowed to change at
random times. Similar effects of boundary conditions have been observed.
Linear models with asymmetric (13) and symmetric (14) random telegraph
signals (dichotomous noise) also show that MFPT behaves non-monotoni-
cally with the jump rates for the transition between these two states when one
of the boundaries is absorbing and the other is reflecting.
In this paper we consider an overdamped linear system driven by a

sinusoidal force and embedded in a noisy environment which is taken to be
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Gaussian white. As mentioned before, no analytic closed form expression is
available in the literature for this explicitly time dependent problem. We
therefore approximate the sinusoidal force (signal) by a multi-step periodic
signal (explained below). This is the system which we considered before. (10)

The only difference is that in this paper we have asymmetric boundary
conditions, i.e., one end point is a reflecting boundary and the other one is
absorbing while in the previous work (10) both the boundaries were taken as
absorbing.
We note that the linear system with single-step periodic signal (perio-

dic telegraph signal) could be recovered as a special case of this system with
multi-step periodic signal. The linear system with single-step periodic signal
(periodic telegraph signal) with one reflecting and one absorbing bound-
aries has been considered in the literature. (14) Non-monotonic behavior of
MFPT with respect to the characteristic frequency of the periodic telegraph
signal has been reported. (14) In this paper we show that the telegraph signal
does not produce any non-monotonic behavior of MFPT with respect to
frequency. This result is in direct contradiction with the result obtained in
ref. 14. The explanation of this contradiction is stated in the text below (in
Section 2 and Section 3.1).
The paper is organised as follows. In Section 2, we give the formula-

tion of the problem. The basic structure of this formulation is similar as
before. (10) The only change with the previous one is to incorporate the
effect of asymmetric boundary conditions. The results of the calculations
are discussed in Section 3. First we present the general characteristics of
CSR. The calculation clearly exhibits how resonance appears in our multi-
step approximation and fails to show in single-step telegraph approxima-
tion of the periodic signal. The general characteristics of the moments and
the characteristic features of FPP for this phenomena are also presented in
this subsection. In the next subsection we focus on the resonance point and
demonstrate some special features associated with it. In particular, we show
in this subsection (Section 3.2) that the cycle variable is the proper argu-
ment to express the FPP at resonance. Further, it is shown that the FPP at
resonance can be expressed in terms of two universal functions. This
feature clearly isolates its dependence on the length of the medium. Finally,
few concluding remarks have been added in Section 4.

2. FORMULATION OF THE PROBLEM

We consider diffusion in one dimension perturbed by a periodic force.
The motion of the particle is given by the Langevin equation

Ẋ=A sin Wt+t(t) (1)
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where X refers to the stochastic variable, A and W are the amplitude and
frequency of the sinusoidal signal and t(t) is a zero mean Gaussian white
noise of strength D with auto-correlation function given by

Ot(t) t(tŒ)P=2Dd(t− tŒ) (2)

The motion is confined between a reflecting boundary at x=0 and an
absorbing boundary at x=L. The Fokker–Planck equation corresponding
to Eq. (1) is

“p(x, t)
“t

=−
“j(x, t)
“x

=−A sin Wt
“p(x, t)
“x

+D
“
2p(x, t)
“x2

(3)

where p(x, t) and j(x, t) refer to the probability density and probability
current density respectively at position x and at time t. The reflecting
boundary condition at x=0 implies that j(0, t)=0 and absorbing bound-
ary conditions at x=L suggests that p(L, t)=0. We now introduce the
dimensionless variables

t=(A/D) x, h=(A2/D) t, w=W/(A2/D) (4)

to write Eq. (3) in terms of new variables:

“p(t, h)
“h

=−sin wh
“p(t, h)
“t

+
“
2p(t, h)
“t2

(5)

The boundary conditions are rewritten as j(0, h)=p(L, h)=0, where
L=(A/D) L.
No analytic solution exists for Eq. (5) with the boundary conditions

mentioned. We thus introduce a scheme to approximate the force sin wh as
a multi-step periodic signal. (10) This scheme is in contrast to the procedure
adopted in ref. 7, where they discretise the Eq. (3) using finite difference
method and simulate the problem on a lattice of space and time. The con-
struction of multi-step periodic signal is available in ref. 10 and shown in
Fig. 1. The specific feature of the construction is that in order to reach the
maximum value (=1) of the signal from the zero level we have to have
(p+1) steps up and from the maximum to the zero level we have (p+1)
steps down. The construction clearly shows that we get back the usual
telegraph signal with p=0. Approximation of the sinusoidal signal by the
usual telegraph signal has been made by ref. 8 in the case of two absorbing
boundaries.
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Fig. 1. Sinusoidal signal (dashed curve) and approximated six-step (p=5) periodic signal
(solid curve) for the full one cycle as a function of h.

The Fokker–Planck equation [Eq. (5)] in each interval with this
scheme will be that for a constant bias, namely

“p(t, h)
“h

=
“UŒ(t) p(t, h)

“t
+
“
2p(t, h)
“t2

(6)

where UŒ(t)=−s(s > 0) for the positive half cycle and equals to +s(s > 0)
for the negative half cycle with s being the value of sk (10) for the corre-
sponding time interval (see Fig. 1). We wish to express the conditional
probability density in each interval in terms of complete set of normalised
eigenfunctions satisfying the boundary conditions mentioned above. For
that it is convenient to cast Eq. (6) into an eigenvalue problem of
Schrödinger type by setting

p(t, h)=e−lhe ±st/2f(t) (7)

Substituting the ansatz Eq. (7) in Eq. (6) we obtain

l=m2+s2/4 (8)

fœ+m2f=0 (9)

Reflecting boundary condition at t=0, j(0, h)=0, and absorbing bound-
ary condition at t=L, p(L, h)=0, associated with Eq. (6) with the help of
Eq. (7) take the following form

[12 UŒf+fŒ]t=0=0, f(L)=0 (10)

In the future development we associate the index n for the positive half-
cycle and index m for the negative.
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Employing these boundary conditions [Eq. (10)] in some interval in
the positive half-cycle, the normalised eigenfunctions, fn(t) are obtained as

fn(t)=r
2

L−
sin 2mnL
2mn

s
1/2

sin mn(L−t) (11)

where mn are obtained by solving the transcendental equation

sin mnL+
2mn
s
cos mnL=0 (12)

The corresponding eigenvalues ln are given by

ln=m
2
n+s

2/4 (13)

We note that l in Eq. (7) must be positive. Therefore in the range −s2/4 <
m2 < 0, employing the above procedure one obtains the eigenfunction
f(t) ’ sinh o(t−L), where o would be obtained as a solution of the
transcendental equation

sL sinh oL+2oL cosh oL=0 (14)

where o2=−m2, o > 0. As no solution exists for Eq. (14), we say that for
the positive half-cycle the normalised eigenfunctions fn(t) in Eq. (11) form
a complete set. On the other hand, for the negative half-cycle, employing
the similar procedure we find the normalised eigenfunctions fm(t) and
the transcendental equations associated with them are similar as in
Eqs. (11)–(12) with suffix n replaced by m for mm ] 0. For mm=0, bound-
ary conditions suggest that one nontrivial eigenfunction exists only when
sL=2. Thus if the value of L is such that sL=2, apart from the eigen-
functions as stated above, one more eigenfunction exists which is

fmm=0(t)=1
3
L3
21/2 (t−L) (15)

Further, in the range −s2/4 < m2 < 0, only one nontrivial eigenfunction
exists for sL > 2. This is given by

fo(t)=r
2

sinh 2oL
2o

−L
s
1/2

sinh o(L−t) (16)
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where o2=−m2, o > 0 and it is obtained by solving the transcendental
equation

− sinh oL+
2o
s
cosh oL=0 (17)

while in the range 0 < s L < 2, no nontrivial eigenfunction exists. The cor-
responding eigenvalues in all the cases are given by

lm=m
2
m+s

2/4 (18)

For a given value of L, the corresponding set of {fn(t)} forms the
complete set of eigenfunctions in the positive half-cycle while the set
{fm(t)} [including Eq. (16) or Eq. (15) as the case may be] forms the
complete set in the negative half-cycle.
Once the complete set of normalised eigenfunctions and eigenvalues

are determined the conditional probability density function p(t, h | tŒ, hŒ) in
the positive half-cycle could be expressed as

p(t, h | tŒ, hŒ)=C
n
u+n (t) u

−
n (tŒ) exp[−ln(h−hŒ)] (19)

where

u ±n (t)=exp(±st/2) fn(t) (20)

with s as the value of sk in the corresponding subinterval of the multi-step
signal (10) where the conditional probability is being decomposed and fn(t)
and ln are given by Eqs. (11) and (13) respectively. The conditional prob-
ability density function in any interval, say l, can then be calculated from
the previous history by convoluting it in each previous intervals. (10)

For the negative half-cycle the calculation of conditional probability
density function is similar except that we have to replace the index n by m
and the conditional probability density function is decomposed as

p(t, h | tŒ, hŒ)=C
m
u−m(t) u

+
m(tŒ) exp[−lm(h−hŒ)] (21)

where the expressions for u ±m (t) are same as in Eq. (20) with n replaced by
m and lm are given by Eq. (18).
The survival probability at time h when the particle is known to start

from t=t0 at h=0 is defined as

S(h | t0)=F
L

0
dt p(t, h | t0, 0) (22)
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The first passage probability (FPP) g(h) is defined as

g(h | t0)=−
dS(h | t0)
dh

(23)

Physically, g(h) dh gives the probability that the particle arrives at the
absorbing boundary in the time interval h and h+dh. From this density
function one can calculate various moments:

Oh jP=F
.

0
dh h jg(h) (24)

From Eq. (24) one can easily calculate mean first passage time (MFPT)
OhP and the variance s2=Oh2P−OhP2 of the density function g(h).
As stated in the introduction, the present formulation is similar to that

of our earlier work for the case of two absorbing boundaries. (10) Of course,
the nature of the eigenfunctions and the associated eigenvalues are different
due to changed boundary conditions in two different cases.The survival
probabilities in the ith cycle and kth subinterval of positive and negative
half cycle of the multi-step periodic signal are given below.

S(h | t0)=C
n
C+n, k exp[−ln, k(h−2(i−1)gh)] On, k,

in the positive half cycle

=C
m
C−m, k exp[−lm, k(h−(2i−1)gh)] Em, k ,

in the negative half cycle (25)

where k=1, 2,..., N(=2p+1) and

C+n, k=F
L

0
dt u+n, k(t) (26a)

C−m, k=F
L

0
dt u−m, k(t) (26b)

and the functions On, k, Em, k are generated through the recursion relations:

On, 1=Fi−1, n (27a)

On, k=C
nŒ

Ou−n, k | u
+
nŒ, k−1P exp[(k−1)(ln, k−lnŒ, k−1) y] OnŒ, k−1 (27b)
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Em, 1=C
n
Ou+m, 1 | u

+
n, NP exp[−ghln, N] On, N (27c)

Em, k=C
mŒ

Ou+m, k | u
−
mŒ, k−1P exp[(k−1)(lm, k−lmŒ, k−1) y] EmŒ, k−1 (27d)

Fi, n=C
m

Ou−n, 1 | u
−
m, NP exp[−ghlm, N] Em, N (27e)

with k=2, 3,..., N, half period gh=p/w, subinterval width y= gh
2p+1 and

F0, n=u
−
n, 1(t0). The angular bracket in any equation implies dot product of

the corresponding functions, for e.g.,

Ou+ | u−P=F
L

0
dt u+(t) u−(t) (28)

The cycle variable i runs over positive integers; i.e., i=1, 2, 3,... . As the
quantities are different for different subintervals specified by k, the double
subscripts are used in order to specify to which specific subinterval they refer.
Note that in many earlier equations, for e.g., in Eqs. (11)–(13), Eqs. (18)–(21)
only one subscript and in Eq. (28) no subscript are used for brevity though
they are double subscripted quantities through the value of sk. The effect of
history is explicit in the expressions for survival probabilities. Once the sur-
vival probability S(h | t0) is obtained from these formluae, the FPP, MFPT
and the corresponding variance are obtained by employing Eqs. (23)–(24).
Evaluation of MFPT and other relevant quantities requires sum of infinite
series which must be truncated in order to obtain a final result. Convergence
of MFPT is ensured by gradually increasing the number of terms (i.e.,
number of eigenvalues) for the calculation. The process is truncated when
MFPT does not change upto two decimal point of accuracy with the change
of number of terms.

3. RESULTS AND DISCUSSIONS

The survival probability, mean first passage time (MFPT), corre-
sponding variances and first passage probability (FPP) are calculated using
the derived formulae for this process. The results are summarised below.

3.1. General Features of CSR

The MFPT is calculated for single-step telegraph signal (p=0) with
t0=L/2. Most of the calculations are done with this specific value of t0.
The variation of the results with variation of t0 is also demonstrated [see
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the text below]. No nonmonotonous behavior is observed in MFPT as we
vary the frequency w. This is in disagreement with Gitterman’s observa-
tion. (14) Because of the wrong set of eigenvalues and corresponding eigen-
functions in both positive and negative half-cycles used to express the
conditional probability density, Gitterman observed nonmonotonic depen-
dence of MFPT with respect to the characteristic frequency of the periodic
telegraph signal.
The calculation is done for the length L=20 and the result is shown in

the curve (a) of Fig. 2. However, when we take p=1, i.e., when the sinu-
soidal signal is approximated by two-step periodic signal, the calculation of
MFPT for the same length shows clearly the nonmonotonous behavior.
This is shown in curve (b) of the same figure. This is therefore the first
stage where resonance appears when passing from telegraph (p=0) to
sinusoidal (p=.) signal. It is worth to mention that similar situation is
observed (10) in the case of two absorbing boundaries. This result clearly
demonstrates that mere flipping of the bias (signal) direction periodically
would not produce the coherent motion. As the rate of flipping increases it
merely prevents the particle more to reach the absorbing boundary and
therefore MFPT increases monotonically. It may be noted that when the
flipping rate is very high, the effect of signal is almost nil and the transport
is effectively diffusive in nature. This is of course true in any type of perio-
dic signal. Therefore, for any type of approximation of the sinusoidal
signal or for any value of p, this feature would show up. In particular, for
p=1, we observe from curve (b) of Fig. 2 that MFPT would asymptotically
reach the diffusive limit 3L2/8 (=150 in this case). The usual telegraph signal

Fig. 2. MFPT OhP as a function of w; (a) for p=0; the usual telegraph signal. This curve is
monotonously increasing with frequency showing no resonance, (b) for p=1; the two-step
periodic signal, [L=20, t0=L/2]. (The variables and parameters used in all the figures are
all dimensionless).
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offers a constant bias of maximum magnitude for the larger time than for a
two-step approximation. Hence the particle always has a larger probability
of reaching the absorbing boundary in short time for p=0 case than for
p > 0 case. Hence MFPT for p=0 and for any w is always less than for
p > 0 case. This is observed in Fig. 2.
In CSR we always have a competition between diffusion and oscilla-

tory effect of the bias. For very large frequency as the bias effect becomes
ineffective MFPT would essentially be guided by diffusive process. For
zero frequency of the multi-step periodic signal the MFPT can be analyti-
cally evaluated. When it starts from the mid-point of the medium it
expresses as

Oh(w=0, t0=L/2)P=0.5(L/s1)−1
2e−3s1L/4

s21
2 sinh(s1L/4) (29)

When frequency of the multi-step periodic signal is very small, the process
is predominantly diffusion with constant value of the bias, s1=0.5 sin(

p
2p+1)

effective for 0 < h [ p
w(2p+1) . As the frequency w is very small, this small bias

s1 is active for most of the time. However, as frequency increases slowly,
the increased bias forces s1, s2,... apart from s1 (s1 < s2, s3,...) would be
operative. These increased biased values reduce the survival probability and
also MFPT. But when the frequency becomes very high, oscillatory effect
of the signal makes the effect of the signal insignificant and MFPT would
bemore. Thus non-monotonocity appears inMFPTas a function of frequency.
For p=1 approximation of sinusoidal signal we observe the non-monoto-
nocity of MFPT . On the other hand, for usual telegraph signal (p=0 case),
for very low frequency, from the very beginning bias force affects the particle
with its maximum strength (s1=1). When the frequency is very low, this
constant bias diffusion continues for a longer time and there is no change-
over of the magnitude of the bias as in the case of p=1. After having a flip,
the particle again suffers a constant bias diffusion in the direction opposite to
the previous one and towards the reflecting boundary. As frequency increases
slowly, this picture remains unchanged until a stage reaches for which the
flipping effect becomes dominant during the particle’s survivality inside the
medium andMFPT increases. This is observed in Fig. 2.
Next we continue all our calculation with p=5 or, with six-step

telegraph signal. Calculation reveals that the value of MFPT does not
change much from that with p=1. On the other hand, p=5 signal
approximates the sinusidal signal better than p=1 signal. We restrict our
calculation with p=5 approximation of the periodic signal.
We calculate the MFPT OhP and the variance s2 as a function of

frequencyw for different lengths (L=10, 20, 30, 40, 50). Both the cumulants
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Fig. 3. MFPT Oh(w)P as a function of frequency w; (a) L=10, (b) L=20, (c) L=30, (d)
L=40, (e) L=50, [p=5, t0=L/2].

go through a minimum as frequency rises from very low value for each
length L. It is observed that the minimum for both the moments occur
almost at the same frequency for each length. This shows that the
maximum cooperation between the deterministic signal and random noise
occurs at this resonant frequency. The value of MFPT OhP increases with
the length at all frequencies. This is understandable because as length
increases, on an average the particle will spend more time in the medium
before reaching the absorbing boundary. It is also observed that the
frequency at which the minimum occurs shift towards low frequency as the
length increases. The behavior of MFPT as a function of frequency for
different lengths is presented in Fig. 3.
The lowering of the dispersion at resonant frequencies confirms that

the cooperation is maximum at these frequencies. Dispersion is more for
higher lengths and merges to a specific value at very low frequency at
various lengths.
All the previous calculations are done when the particle starts initially

from the mid point of the medium, i.e., t0 in Eq. (22) is taken as L/2. At
the length L=30 the resonant frequency is found to be 0.06. The calcula-
tions are done one at resonant frequency and other two at the off-resonant
frequencies (w=0.1 and w=0.0) when the particle starts from t0=bL
where b lies between 0 and 1. For zero frequency the MFPT can be analyt-
ically obtained. Its expression reads as

Oh(w=0, bL)P=
L(1−b)
s1

−12e
−s1L(1+b)/2

s21
2 sinh(s1L(1−b)/2) (30)
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The curves are shown in Fig. 4. It is evident that the value of OhP is less for
resonant frequency (curve (a)) than for its value for off-resonant frequen-
cies (curves (b) and (c)). For each curve the maximum value of OhP occurs
at lower values of b or, when the particle starts from the left of the interval
(near the reflecting boundary). Our signal starts with positive half-cycle
and therefore the survival time of the particle would be more if the particle
starts from the left of the interval. On the other hand, if it starts from right
half of the medium (near the absorbing boundary), the initial surge of the
signal helps the particle to reach the absorbing boundary more quickly.
Hence average time of duration decreases. For curve (b) where the
frequency of the signal (w=0.1) is more than the resonant frequency, the
oscillatory contribution is more than that for the resonant frequency
making the MFPT large than for curve (a). For curve (c) where the
frequency is zero (w=0.0), the particle experiences a constant bias (s=s1)
towards the absorbing boundary all the time. This is in contrast to the
other two cases where the particle has a probability to experience bias of
magnitude more than s1. As the value of s1 (the first value of six-step
periodic signal) is smallest hence the curve (c) lies always above the curves
(a) or (b).
The FPP g(h; w) for different frequencies are calculated and plotted as

a function of h for a given length L=30 [Fig. 5]. One can clearly see the
evolution of the FPP profile as the frequency increases from w=0.0 to
w=0.1.
At very small frequency , the particle is acted on by a constant force

s=s1 (in the multistep periodic approximation) almost all the time before it
reaches the absorbing boundary. The FPP curve shows that we have only
one maximum in the entire h-range.

Fig. 4. MFPT OhP as a function of b for length L=30; (a) for resonant frequency wg=0.06,
(b) for off-resonant frequncyw=0.1, (c) for off-resonant frequncyw=0.0, [p=5].
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Fig. 5. FPP g(h) as a function of h for L=30 for frequencies w=0.0, 0.003, 0.01 (before
resonance), w=0.06 (resonant), w=0.1 (after resonance) respectively, [p=5, t0=L/2].

As the frequency slowly increases, one finds that, apart from only one
maximum (like the one at very small frequency) other small peaks at larger
h also show up gradually. Also, these new small peaks start becoming
stronger as the frequency increases. This is because the particle which ini-
tially sees a constant bias (s=s1) for some time encounters an increased
bias after a while (larger h) and so on before reaching the absorbing
boundary. As > g(h) dh=1, the area under the major profile decreases and
is compensated by extra peaks at higher h. We therefore see that as the
frequency increases continuously, the small peaks that show up at higher h
start growing and at the same time the first peak slowly decreases keeping
the total area same.
The resonance occurs at w=0.06 for L=30. The MFPT has a

minimum at that frequency. It has been argued that the synchronization
between the signal and the noise is maximum at this frequency causing the
enhancement of the probability of reaching the absorbing boundary at a
short time. The FPP profile at resonance (at this frequency) evidently
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shows a dominant single peak. We also see that the constituent profiles of
FPP adjust themselves in a very distinct way, as the frequency increases, in
order to produce a dominant maximum at the resonance.
Beyond the resonance (at higher frequencies) the peaks are quite

numerous, distinct and identified separately, while the area of the dominant
peak (at resonance) starts decreasing. In other words, the degree of synchro-
nization is getting reduced as we go beyond the resonant frequency—if we
identify the area of the peaks as the degree of synchronization (considering
total area is normalized).

3.2. Special Features at Resonance

In this subsection we concentrate on the behaviour of the system at the
resonance point. We have already discussed some general characteristics of
CSR in the previous subsection. We find that for each length, L, a corre-
sponding frequency wg exists for which OhP and s2 become minimum
implying that the maximum cooperation between the deterministic periodic
signal and random noise of the environment is taking place in helping the
particle to reach the absorbing boundary. One therefore would naturally
inquire about the relation of wg with L. In the range of L we studied, this
curve is very well fitted with the formula

wg=C/Lc (31)

where C=0.8053, and c=0.7615.
The values of MFPT at resonance Oh(wg)P is found to increase

linearly with the length L and within the range of L we consider the rela-
tion between them is fitted to

Oh(wg)P=0.79L+1.85 (32)

Of course, there will be deviation from this linear behaviour as L decreases
further because OhP can not become positive for L=0 (corresponding to
L=0); OhP should be zero at L=0.
We have already seen that at the resonance frequency we have single

dominant peak of FPP, g(h) [Fig. 5]. Since it is a general feature, for each
length L we should get such behaviour. When we plot g(h)/wg as a func-
tion of [wg(L) h], we find that the curves for different lengths superpose
over each other [Fig. 6] and the pattern of g(h)/wg for different L or wg is
very similar, i.e., at particular values of [wgh], all curves show their
maxima, and change in the behavioral patterns of the curves occur exactly
at the same places of [wgh]. This shows that [wgh] or the cycle number is
the correct variable to describe the resonance behaviour. We may further
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Fig. 6. The dominant peaks of g(h)/wg at resonant frequencies for different lengths (L=20,
25, 30, 35, 40, 50) as a function of wgh. The lowermost curve is for L=20 , and as length
increases gradually upper curves are generated, [p=5, t0=L/2].

note that such scaling of FPP would not be possible for any frequency
other than the resonant frequencies because any frequency which is not the
resonant frequency for one length may turn out to be the resonant
frequency for some other length and the features of FPP are different for
resonant and off-resonant frequencies as has been observed from Fig. 5.
The major dominant peaks of FPP g(h)/wg for different lengths (L=20,
25, 30, 35, 40, 50) are drawn as a function of [wgh] in Fig. 6. The lower-
most curve is for L=20 and as length increases the upper curves are gen-
erated. The peaks for all the curves occur nearly at a quarter of a cycle.
Having found the proper scaling of the argument of FPP, it is natural

to enquire whether the FPP, f — g(h)/wg can also be scaled properly, so
that once f(x) with x=wgh is found for one length, the function f(x) can
be obtained for any arbitrary length.
In order to investigate this issue, first we observe that going from

f(x; L1) to f(x; L2), where L1 and L2 are two different lengths we have to
multiply one function by different amount depending on the value of the
argument. Thus if at all any scaling relation exists, this should be of the
form

fmL(x)=fL(x) ma(x) (33)

Note that Eq. (33) is a hunch and it is indeed found to be true with
a(x) given in Fig. 7. We note that a(x) is universal and it decreases very
rapidly to large negative values for very low x. We thus have two types of
scaling on FPP at resonance. One is on its argument, namely h0 (wgh)
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Fig. 7. The universal functions a(x), ln U(x) as a function of x.

and the other is on the function itself through the universal function a(x).
From the relation (33) it is obvious that

L−a(x)fL(x)=[mL]−a(x) fmL(x) (34)

The Eq. (34) shows that the function L−a(x)fL(x) is independent of L and it
is again universal. We verify this result in our calculation of FPP for dif-
ferent lengths and call this function U(x). The ln U(x) is also plotted in
Fig. 7. Note that ln U(x) takes a very large positive values for low x in
order to have finite but small value of fL(x) in that region. At x 4 1.5
where the peak of fL(x) occurs, ln U(x) is small negative while a(x) takes
small positive value. Thus we could express fL(x) at resonance in terms of
two universal functions U(x) and a(x) as

fL(x)=U(x) La(x) (35)

The expression (35) clearly isolates the dependence of FPP on length of the
medium L at resonance. The form (35) for fL(x) is plotted for a typical
length L=30 and compared with values calculated from Eq. (23) in Fig. 8.
It is giving an excellent agreement. Further with this form, the MFPT is
found for different L. It also yields required behaviour as in Eq. (32). This
shows that not only we have found a scaling behaviour given by Eq. (33)
which takes f(x) from one length to the other, it is also possible to obtain
a simple expression Eq. (35) for fL(x) for any arbitrary length.
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Fig. 8. fL(x) as a function of x for L=30 at resonance from values calculated from Eq. (23)
(filled circle) [p=5, t0=L/2] and fL(x) according to the formula (35) as a function of x for
L=30 (solid curve).

4. CONCLUDING REMARKS

We consider a diffusive transport process perturbed by a sinusoidal
signal in continuous one dimensional medium having one reflecting and
one absorbing boundaries. We showed explicitly that the cooperative
behaviour between the deterministic periodic signal and random noise
leading to coherent motion occurs when the time-dependent sinusoidal
signal is approximated by a multistep periodic signal and not with single-
step telegraph signal.
Although we study the process with p=5 periodic signal, the formula-

tion is quite general and applicable for any approximation with arbitrary
number of steps. This formulation can also be applied to any arbitrary con-
tinuous periodic signal. Further, no perturbation of the signal amplitude is
assumed in this formulation.
It is observed that in the low time regime frequency dependent bias

force (i.e., the chance of having increased values of the bias in the same
direction is more for relatively high frequency than for low frequency) has
the key factor for resonance to occur. For very high frequency the bias
effect is practically absent and the motion is purely diffusive in nature. At
the resonance the maximum cooperation between the noise and the perio-
dic signal takes place making the MFPT a minimum.
The resonant frequency decreases and the mean first passage time at

resonant frequency increases linearly, as we increase the length of the
medium. The corresponding relations are obtained. This fact provides a
measure of the time scale of this process at resonance.
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Other important characteristic that we observe is that at the resonance
the FPP for various lengths have similar behaviour if we scale the argu-
ment of FPP as h0 (wgh). The curve shows that there is single dominant
peak, which is a reflection of the fact that the synchronization between the
deterministic periodic signal and the random noise is maximum at reso-
nance. The peak positions of these curves occur very near to a quarter of a
cycle showing that the cycle number is the correct argument to describe
FPP at resonance.
We also show that there exists a scaling relation between FPP at various

lengths through some universal function a(x). The exact expression for FPP
at resonance is obtained in terms of two universal functions, which clearly
isolates its dependence on the length of the medium. This is a special feature
of coherent stochastic resonance. This form may be of use in obtaining
quicker result in cases where more complex situation is called for.
All calculations are made to an end when the survival probability

takes a value 1×10−3. We observe that if we cut off the calculations for
more lower values of survival probability it does not affect MFPT but the
variances are slightly affected.
From Fig. 6 we observe a slight deviation of the peak positions but we

believe that if the sinusoidal signal is approximated by more than a p=5
periodic signal the position of all the peaks will be the same.
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